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ABSTRACT 

We study the thermal and dynamical evolution of the neutron star  with frictional heat 

generation in its interior. We employ the simple two component model star with the 

superfluid core and the crust and consider the various core-crust coupling mechanisms 

proposed so far. The evolutionary stage of the neutron star is classified in terms of thermal 

and dynamical equilibria or disequilibria and the stability of each characteristic equilibrium 

state is examined by the perturbation analysis. We find that when the core-crust coupling 

has a strong dependence on temperature such as exponential dependence, the equilibrium 

state in which the cooling and heating rates balance is thermally unstable below a critical 

temperature. This critical temperature is determined by the condition that in the unstable 

regime the thermal time scale is shorter than the dynamical time scale. When coupling does 

not or weakly depends on temperature, however, there exist no unstable mode in any 

characteristic equilibrium state. Combining our.results with the most recent study on the 

core-crust coupling by strongly magnetized superfluid vortices indicates that the simple two 

component model star is thermally and dynamically stable through the whole course of its 

evolution. 
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I. INTRODUCTION 

The neutron star is an intriguing object which has been investigated intensively through 

pulsars and X-ray stars. The knowledge on its interior has been obtained mainly from the 

study of pulse frequency variations in pulsing sources (Lamb 1985 and references therein) 

and the study of the thermal history (see Tsuruta 1986 for a review). The observation of 

the glitch (sudden jump in pulse frequency) (Radhakrishnan and Manchester 1969; 

Reichley and Downs 1969) has led Baym et al. (1969) to the suggestion that the neutron 

star contains the superfluid in its interior. They proposed the two component model in 

which the neutron star consists of the superfluid core and the crust. They interpreted the 

post-glitch relaxation as resulting from the coupling of core to crust and explained 

observations qualitatively. 

The relaxation time of the post-glitch behavior is considered to reflect the interaction of 

the charged component to the neutron. Feibelmah (1971) considered the electron scattering 

from the vortex excitation and calculated the velocity relaxation time which covers the 

observed values ( - weeks to months). Harding, Guyer and Greenstein (1978) showed 

that the scattering of normal neutron within vortex lines from phonons or impurities in the 

crust yields the much shorter relaxation time than the electron-vortex excitation scattering. 

Sauls, Stein and Serene (1982) argued that 3Pz vortices give the different coupling from 

IS0 superfluid because 3P2 vortex has a weak spontaneous magnetization in the vortex 

1 core region. The relaxation time by this process is about a year. Recently, Alpar et al. 

(1984a) have shown that the vortex line in the core is strongly magnetized due to the 

induced proton current and consequently the neutron superfluid in the core couples to 

charged particles and to the crust in a very short time, - 400 P(s), where P is the rotation 

period of the star. Hence, they concluded that the core superfluid cannot be responsible for 

the observed post-glitch relaxation. Instead, Alpar et al. (1984b) proposed that the glitch 

is caused by the sudden unpinning of the superfluid vortex in the inner crust and the post- 
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glitch behavior is determined by the creep motion of the pinned vortex. This model gave a 

good fit to observations. 

The crust-core coupling which determines the dynamical response of the star 

accompanies the frictional heat generation, which in turn influences the coupling itself. 

Hence, it is vital to consider the thermal and dynamical behaviors together in order to 

understand the evolution of the neutron star correctly. First, Greenstein (1975 and 

references therein for his older works and see also Harding, Guyer and Greenstein 1978) 

paid attention to the internal energy dissipation and suggested that the frictional heating may 

have a significant effect on the later part of the thermal history of the star. Greenstein 

(1979) examined also the stability of this energy dissipation using the electron-vortex 

excitation scattering and showed that the frictional heat generation undergoes a thermal 

runaway. Recently, Shibazaki and Lamb (1986) calculated the cooling curve of the neutron 

star taking into account the internal energy dissipation due to the vortex creep. They found 

that the internal heating produces the consideribly slower photon cooling phase which 

completely change the conventional picture of steep cooling of the old neutron star. 

In this paper we study the thermal and dynamical evolution of the neutron star, 

especially paying attention to the thermal and dynamical stability of the characteristic stages 

which the star might undergo in its evolutionary course. We consider the simple two 

component model star with frictionally coupled core and crust. The thermal and dynamical 

stability of the vortex creep motion will be described in the next paper. 

1 In Section II we present the basic equations to describe the thermal and dynamical 

evolution of the star. The characteristic stages of evolution are also mentioned. In Section 

III we apply the infinitesimal perturbation analysis to one characteristic stage and derive the 

criterion for the instability. In Section IV we study the physical meaning of the instability 

found in Section III. In Section V the stability of other characteristic stages is examined. 

In Section VI we discuss the possibility of the instability to occw. 
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II. FRICTIONAL COUPLING MODEL 

We use the simple two-component model (Baym et al. 1969) in which the neutron star 

consists of the crust and the superfluid core. We assume that the rotation of each 

component is uniform and both components are coupled through the friction. We assume, 

furthermore, that the neutron star is isothermal. Here we consider first the basic equations 

to describe the thermal and rotational evolution of this model neutron star and then the 

equilibrium states which are conceivable in its evolutionary course. 

The rotational motion of the crust is governed by the external torque Next and the 

internal friction torque: 

. 
where 4 and 51, are the angular velocities of crust and core, respectively and E and Is are 

the moments of inertia of crust and core, respectively. 

Using the coupling time zc between the core and the crust, the equation of motion of the 

core is written as 
IC Qs-" C 

hs=-T 2 

'where I is the total moment of inertia given by I = Is + IC . The several coupling 

mechanisms have been discussed in the past. Those results are expressed by the general 

form as given by 
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where T is the temperature, Ta the activation temperature and A the coupling constant. The 

coupling mechanisms considered so far are summarized in Table 1. 

The thermal history of the neutron star is described by 

where C, is the heat capacity, H the heating rate and A the cooling rate. Throughout this 

paper we employ the heat capacity for the degenerate matter, which is proportional to the 

temperature: 

C,=aT , (5)  

where a is the constant. As a heat source we take into account only the friction between 

two components: 

The neutron star cools by the neutrino emission when it  is hot. At low temperature the 

radiative cooling becomes dominant. The cooling rate can be expressed in a general form 

as a function of temperature: 

A = B ~  , 
\ (7) 

where n varies in the range 2 to 8 and B is the constant. 

There are two characteristic equilibria which the neutron star might undergo in the 

course of its evolution, the dynamical equilibrium and the thermal one. In dynamical 
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equilibrium the crust and the core decelerate at the same rate. Hence, dynamical 

equilibrium is specified by 

L 
=co 

Hereafter the suffix o denotes the equilibrium state. It should be noted that in Eq. (8) the 

coupling time zc0 is assumed to be much shorter than the spin-down time zso implicitly: 

where the spin-down time is defmed by 

zso = Qco/(-h j . 
co 

From Eqs. (8) and (10) the angular velocity lag between core and crust in dynamical 

equilibrium is expressed as 

1 

Equation (11) combined with Eq. (9) indicates that the equilibrium lag is very small as 

compared with Qco or Rso in the standard model of a neutron star with E/I = 1-10-2 : 
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In thermal equilibrium the cooling rate! balances with the heating rate: 

- I, (Go- R,) hs0 = B f  0 . 

The thermal equilibrium is possible when the cooling (or heating) time is much shorter than 

the spin-down time: 

where zcool is the cooling (or heating) time defined by 

. 
The evolutionary stages of neutron star are characterized in terms of thermal and 

dynamical equilibria or disequilibria as shown in Fig. 1. If the characteristic stages in Fig. 

1 were all realized in the course of the evolution, then the simple scenario of the evolution 

would be the one indicated by the dashed line. The neutron star is born in thermal and 

dynamical disequilibrium. Since the coupling time is very short at high temperature, the 

neutron star settles into the dynamical equilibrium immediately. The cooling due to the 

neutrino emission is dominant over the frictional heating at high temperature. Hence, the 

neutron star is not in thermal equilibrium. The neutron star stays at the stage B as long as 

the cooling dominates the heating. As the temperature decreases and the frictional heating 

becomes important, the neutron star gets into the stage C, where it is in thermal and 

dynamical equilibrium. As the temperature falls further, the coupling time becomes 

comparable to the spin-down time: 

I 



At this point the crust decouples from the core (Greenstein 1975) and the neutron star 

enters into the stage D. Combining Eq. (16) with Eqs. (3), (8) and (13) yields the critical 

temperature below which the decoupling occurs. This critical temperature Td is illustrated 

in Fig. 2 as a function of A and Ta for the case of electron-vortex excitation scattering. It is 

seen that the critical temperature for decoupling Td depends strongly on the activation 

temperature. The physical parameters at the decoupling time are shown in Table 2 for the 

case of A = 5x1012 rad K and Ta = 108 K. 

Depending on the initial condition, the neutron star model and the coupling mechanism, 

however, the simple evolutionary track mentioned above will be modified. Furthermore, it 

should be noted that the evolutionary path in Fig. 1 is also influenced by the stability or 

instability of each stage. If a certain stage is unstable, that stage may not persist and the 

subsequent stages may never be reached. In order to understand the thermal and rotational 

evolution of neutron star, hence, it is very important to see the stability or instability of the 

characteristic stages shown in Fig. 1. In the next sections we examine the stability of these 

stages. 

III. STABILITY OF STAGE C TO l ” T E S I M A L  PERTURBATION 

We begin the stability analysis with the stage C in which the thermal and dynamical 

equilibrium is attained since it is the most general case and the part of its analysis is also 

applied to the stages B and D. 

1 

(1) M i n i  tesimal pertu rbabon 



9 
In order to h o w  the stability or instability we introduce the infinitesimal 

perturbation into the stationary state and see whether or not it grows with time. 

where 6 Q ,  6Qs and 6T are the infinitesimal perturbations of crust angular velocity, core 

angular velocity and temperature, respectively. From Eqs. (l), (2) and (4) together with 

Eqs. (3), (5)-(8), (13) and (17), we obtain the linearized equations: 

C Q so 6Q s Ta 6T + (1+ -) - + (m + -) - sh Qco8Q 

Qso "0% "0 Q so To To 
+=- 

fcool = ToJ=c001 * 

where 

It is assumed in Eq. (18) that the external torque is a function of q. We consider the 

solution such as 

KIJQ~ = Ele-ivr 

6Qs/R = E  e 

ST/T, = e-ivt , 

-ivt 
* 2  

3 
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where ~1 ~2 and &3 are infinitesimal constants. In this paper we consider the solution 
9 ,  

which has the Characteristic time much shorter than the spin-downtime: 

When we take the time derivative of perturbations 6Q-, 6Rc and 6T in Eq. (22), therefore, 

Rco, Qso and To are kept constant. 

In the following of this paper we ignore the effect of external torque. Because we 

found that the effect of the magnetic braking does not change the essential results on the 

instabiiity and it rxikes the &sc.;ssizn sL~p!e tc! neglect f ie  external torque. Now the 

neutron star is a closed system and hence the angular momentum is conserved through the 

perturbation: 

I c6ac+Ip2s=b  . 

We consider here the case where 

IC << Is 

(We find the same results also for the case E>>Is). Equations (24) and (25) give 
I 

Under the condition of Eqs. (12) and (26) 6Qs terms in Eqs. (19) and (20) can be 

neglected as compared with 6Qc terms. Inserting Eq. (22) into Eqs. (18)-(20) under above 

assumptions (Eqs. (E), (23), (25) and (26)), we derive 
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2 -1 -1 -1 -1 v +(Ta-STm0, )iv-t;z, T ~ ~ ~ = O  , 

where 5 and < are defined by 

and 

-I- 

*a 

TO 
( = - + m + n  , 

respectively. 

(2) Solutions 

The property of the solution to Eq. (27) w be understood from examining the 

extreme cases. 

The solutions to Eq. (27) in this case are calculated as 

and 

Since the imaginary part of v is positive in both solutions, the perturbation grows with time 

and hence the neutron star is unstable. It is noted that the growth times (-l/lvl) of the 

perturbation in solutions v i  and ~2 are related to the cooling and coupling times, 
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respectively. This evidence implies that the unstable modes vi and v2 may be thermal and 

dynamical instabilities, respectively. 

and 

In this case Eq. (27) yields two solutions given by 

v1 - i 

-1 . 
- 9  .V-T 

*2 "CO (33) 

The negative imaginary part in both solutions shows that the perturbation damps with time 

and hence the neutron star is stable in this case. , 

It is easily seen that solutions to Eq. (27) have all negative imaginary parts in this case 

and hence the star is stable. 

It is to be noted that the coupling process with no temperature dependence in Table 1 

corresponds to this case since setting Ta = 0 and m = 0 yields 6 = -n < 0. Hence, if the 

coupling between crust and core is determined by the electron scattering from magnetized 

vortex, the neutron star in stage C is stable. 

1 

(3) Instability criterion 

It is known from the above analysis that the neutron star is unstable when the 

following conditions are satisfied 
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and 

Equation (34) is the condition which Greenstein (1979) presented for the occurrence of 

thermal instability. Our study, however, shows that Eq. (34) is necessary, but not 

sufficient. In addition to Eq. (34), Eq. (35) is also required for the instability. In the case 

of the coupling process with exponential dependence on temperature, in fact, the instability 

is determined solely by Eq. (35) since in the situation of our interest To<<Ta and hence the 

inequality in Eq. (34) is always satisfied. Now we can conclude that the neutron star is 

unstable when the thermal time (zm) is shorter than the dynamical time (zco). 

As seen from Eq. (3), the coupling time (dynmical h e )  becomes larger rapidly as the 

temperature decreases in the case Ta f 0. Whereas, the thermal time qo increases relatively 

slowly as the neutron star cools. Hence, there is a critical temperature Tc below which the 

neutron star becomes unstable. This critical temperature is depicted in Fig. 3 as a function 

of the coupling constant A and the activation temperature Ta for the case of electron-vortex 

excitation scattering. It is noted that the critical temperature depends strongly on the 

activation temperature, but very weakly on the coupling constant. The physical parameters 

at this critical moment for the case of A = 5 x 1012 rad K and Ta = 108 K are written in 

Table 2. 

IV. PHYSICAL INTERPRETATION OF THE UNSTABLE MODE 

In the previous section the two unstable modes have been found and suggested to be 

the thermal and dynamical instabilities in terhs of their growth time. Here we study the 

physical meaning of these instabilities. 
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(1) Therfna 1 r e s F  nse 

First we pay attention to the thermal behavior of the neutron star when the 

temperature is perturbed. Under the condition of Eq. (35) the change in dynamical 

quantities Oc and Osin Eqs. (19) and (20) can be neglected because the dynamical time is 

much longer than the thermal time. Hence, the response to the temperature perturbation is 

determined by 

6h Ta 6T 

40 0 T O  

-= (T-+m)-  

and 

Equations (36) and (37) can be solved to give 

6T(t) = 6T(O) exp(t /%) . 

The temperature perturbation grows with a time scale of zto. The unstable mode v i  in the 

previous section is truly identified as a thennal instability. 
I 

This thermal instability is understood physically as follows. As seen from Eqs. (3) and 

(2), the increase in temperature makes the coupling time shorter and the friction larger. The 

more rotational energy is dissipated into the heat, which results in further temperature 

increase. In this way the thermal runaway proceeds. 
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Next we consider the dynamical perturbation keeping the thermal equilibrium 

Under the thermal equilibrium and the assumptions of Eqs. (12) and (26), Eqs. (18)-(20) 

reduce to 

The solution to Eqs. (39)-(41) is calculated as 

6T(t) = 6T(O) exp ( t 5 z ) 
6 co 

9 

where 6T(O) = (2/5)(6Qc(0)/00)T,. The perturbation grows with a time scale of the 

coupling time. 
I 

The physical cause of this instability is interpreted as follows. Consider the dynamical 

perturbation in which RC increases and Rs decreases. The decrease in lag o accompanies 

the dissipation of rotational energy into heat. Then the temperature increases. The higher 

temperature makes the coupling time shorter and hence the friction larger, which leads Qc 

and Rs to further increase and decrease, respectively. 
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The unstable mode v2 found in the previous section is now identified as a dynamical 

instability. Even if this dynamical instability is triggered by some perturbation, it will be 

suppressed to proceed as compared with the thermal instability mentioned above, especially 

if triggered at To <<Tc. Because the thermal equilibrium assumed in the course of the 

dynamical perturbation is already unstable and this thermal instability grows faster than the 

dynamic1 instability 

V. STABILITY OF STAGES B AND D 

Here we apply the perturbation analysis to the stages B and D and examine their 

stability. 

(1) sw!s 
It is assumed in the stage B that the neutron star is in dynamical equilibrium, but not 

in thermal equilibrium. This stage might be considered for the hot neutron star since at 

high temperature the coupling time is very short and the neutrino cooling dominates over 

the frictional heating. The stability of this state is judged from the response to the 

dynamical perturbation of the neutron star. 

Since the cooling time zcool is much longer than the coupling time, the temperature is 

assumed to be constant through the dynamical perturbation. Neglecting the external torque 

and the temperature variation, Eqs. (18), (19) and (22) together with Eqs. (10) and (11) 

give 

where 
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IC a. a=l+-- . (45) 

Equation (12) indicates that a - 1 in the situation as concerned. The solution which 

satisfies Eq. (23) is obtained as 

,T -1 
v - - F >  i . 

a 
(46) 

The perturbation damps with the time scale of the coupling time and hence the neutron star 

in the stage B is stable. 

(2) 

The stage D is the thermal equilibrium state after the decoupling in which the 

coupling time is longer than the spin-down time. Dynamically the neutron star is not in 

equilibrium. After decoupling the crust is decelerated considerably and its angular velocity 

approaches to zero. Neglecting 6Qc terms, Eqs. (19) and (20) together with Eq. (22) yield 

I 

where T,, redefined as T,, Q,d(-Q,,) is the spin-down time of the core. In the case of 

the coupling process with exponential dependence on temperature + 0), as seen from 

Fig. 2, the decoupling occurs at low temperature, To << T,, which yields €, >> 1. Since 

Rco - 0 after decoupling, 0, - Rsw Furthermore, if we take into account the condition for 
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the thermal equilibrium given by Eq. (14), we can see that the fmt term in square bracket in 

Eq. (47) can be neglected. Then, the solution satisfying Eq.(23) is obtained as 

-1 
v - T , ~  . 

The perturbation grows with the thermal time scale zt0 and hence the stage D is thermally 

unstable. The physical meaning of this instability is the same as that given in Section 4. 

When 6 e 0 as in the case of the coupling process with no temperature dependence, it is 

easily known that Eq. (47) yields solutions with negative imaginary part. Since the 

perturbation diminishes with time, the star is thermally stable in this case. 

VI. CONCLUDING REMARKS 

We have examined the thermal and dynamical evolution of the neutron star with 

frictionally coupled core and crust examining the stability of the characteristic equilibrium 

states which are conceivable in its evolutionary course. The main results obtained are 

summarized as follows: 

(1) The hot neutron star which is in dynamical equilibrium and in which the (neutrino) 

cooling rate dominates over the internal heating rate is stable irespective of the core-crust 

coupling mechanisms. 

(2) 

exponential dependence, the thermal and dynamic1 equilibrium state is stable above a critical 

temperature, but thermally unstable below a critical temperature. This critical temperature is 

If the core-crust coupling has a strong dependence on temperature such as 
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determined by the condition that in the unstable regime the thermal time scale is shorter than 

the dynamical time scale. 

(3) 

thermally unstable if the core-crust coupling has a strong temperature dependence. 

The thermal equilibrium state after the &coupling of the crust from the core is also 

(4) 

coupling on temperature. In the case of the coupling process with exponential dependence 

on temperature, the temperature increase produces the shorter coupling time and hence 

larger frictional heat generation which leads to still higher temperature and then results in a 

thermal runaway. 

This thermal instability is derived from the sensitve dependence of the core-crust 

(5)  

is thermally and dynamically stable through the whole course of its evolution. 

If the core-crust coupling does not or weakly depend on temperature, the neutron star 

Recently, Alpar et al. (1984a) found that 3P2 vortex lines in the superfluid core of the 

star are strongly magnetized by the induced proton charge current and hence the electron 

scattering from vortices gives very short coupling time of core to crust. In fact, the 

coupling time presented by them suggests that this coupling process largely overwhelms 

the other processes considered so far and determines the coupling of core to crust for 

temperature below the superconducting transition temperature ( - l O l 0  K). It is to be 

, noted, furthermore, that this coupling process does not depend on temperature. Hence, 

combining these facts with our results leads to the conclusion that the neutron star 

described by the simple two component model is stable through the course of its thermal 

and dynamical evolution. 
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Table 1 Coupling Mechanism 

Coupling Mechanism 

Electron-vortex excitation 
scattering' 

2-Phonon N process * 

2 2-Phonon U process 

2 Neutron-impuity scattering 

Spontaneous magnetization 
of p2 vortices 3 

Strong ma,onetization 
of 3 ~ 2  vort1ces4 

lFeibelman (1971); 2 Harding et al. (1978); 
3Sauls et al. (1982); Alpar et al. (1984a) 

I 

Coupling Time 

A 

Q 
- 

S 

A 
c? 

S 
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Table 2 Physical parameters at the critical moments for the instability and the 

decoupling 1 

Instability 

Critical temperature 

Temperature increase 

Crust angular velocity 

Core angular velocity 

Angular velocity lag 

Angular deceleration 

Coupling time 

Cooling time 

Spin-down time 

2 

IS 

6 . 4 ~ 1 0 ~  

2.2X1o5 

17 

17 

0.03 

5 . 7 ~ 1 6 ~ ~  

8.7~ 1 O3 

5 
1 .3~10  

9 . 5 ~ 1 0 ~  

Decoupling 

4 . 0 ~  lo6 

2.5~10' 

2.3 

7.1 

4.8 

1 . 4 ~  1 

52x10' 

5 
1 . 4 ~ 1 0  

52x10' 

1 

2 

The same model parameters as those in Fig. 2 are used. The coupling constant and 

AT is the increase in temperature when the lag o, goes to zero suddenly and the 
the activation temperature are chosen as A = 5x1012 rad K and T, = 108 K, respectively. 

rotational energy is dissipated into heat, 
' 
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FIGURE CAPTIONS 

Fig. 1 Characteristic evolutionary stage of the neutron star in terms of thermal and 

dynamical equilibria or disequilibria The dashed line indicates the possible 

evolutionary track in the case where all characteristic stages are realized in the course 

of evolution. 

Fig. 2 Temperature at the decoupling time as a function of the coupling constant and the 

activation temperature. The coupling model used is the Feibelman's case (197 1). 

The stiff neutron star model (Pandharipande et al. 1976) is employed; M = 1.4 Mo., 

R = 1.58~106 cm, I, = 1.13~1045 g cm2 and I, = 1.05~1045 g cm2. The magnetic 

braking due to the magnetic dipole radiation is taken into account as the external 

torque. The magnetic dipole moment used is 1030 gauss cm3. The photon cooling 

law and the heat capacity used are A = 2.2~1015 9 - 2  ergs/s (Gudmundsson et al. 

1983) and Cv = 2x1029 T erg/ K. 

Fig. 3 Critical temperature for the instability as a function of the coupling constant and the 

activation temperature. The neutron star is unstable below the critical temperature. 

The model parameters used are the same as those in Fig. 2. 
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